Ela on Roth ’ S Pseudo Equivalence over Rings

نویسنده

  • Roger A. Horn
چکیده

The pseudo-equivalence of a block lower triangular matrix T = [Tij ] over a regular ring and its block diagonal matrix D(T ) = [Tii] is characterized in terms of suitable Roth consistency conditions. The latter can in turn be expressed in terms of the solvability of certain matrix equations of the form TiiX − Y Tjj = Uij .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Roth's pseudo equivalence over rings

We characterize the pseudo-equivalence of a block lower triangular matrix T = [Tij ] over a regular ring, and its block diagonal matrix D(T ) = [Tii], in terms of suitable Roth consistency conditions. The latter can in turn be expressed in terms of the solvability of certain matrix equations of the form TiiX − Y Tjj = Uij .

متن کامل

MATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION

Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...

متن کامل

Pseudo-almost valuation rings

The aim of this paper is to generalize the‎‎notion of pseudo-almost valuation domains to arbitrary‎ ‎commutative rings‎. ‎It is shown that the classes of chained rings‎ ‎and pseudo-valuation rings are properly contained in the class of‎ ‎pseudo-almost valuation rings; also the class of pseudo-almost‎ ‎valuation rings is properly contained in the class of quasi-local‎ ‎rings with linearly ordere...

متن کامل

Ela Jordan Left Derivations in Full and Upper Triangular Matrix Rings

In this paper, left derivations and Jordan left derivations in full and upper triangular matrix rings over unital associative rings are characterized.

متن کامل

Ela Comparison of Congruences and Strict Equivalences for Real, Complex, and Quaternionic Matrix Pencils with Symmetries∗

The equivalence relations of strict equivalence and congruence of real and complex matrix pencils with symmetries are compared, depending on whether the congruence matrices are real, complex, or quaternionic. The obtained results are applied to comparison of congruences of matrices, over the reals, the complexes, and the quaternions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007